A finite steps algorithm for solving convex feasibility problems
نویسندگان
چکیده
This paper develops an approach for solving convex feasibility problems where the constraints are given by the intersection of two convex cones in a Hilbert space. An extension to the feasibility problem for the intersection of two convex sets is presented as well. It is shown that one can solve such problems in a finite number of steps and an explicit upper bound for the required number of steps is obtained. Our approach is closely related to the classical alternating projection method for solving convex feasibility problems. As an application, we propose an algorithm for linear programming with linear matrix inequality (LMI) constraints. We show how to compute the solution of LMI optimization using a finite steps algorithm with an easy implementation. This solution can be computed by solving a sequence of a matrix eigenvalue decompositions. Moreover, the proposed procedure takes advantage of the structure of the problem. In particular, it is well adapted for problems with several small size constraints.
منابع مشابه
A Finite Step Projective Algorithm for Solving Linear Matrix Inequalities
This paper presents an algorithm for finding feasible solutions of linear matrix inequalities. The algorithm is based on the method of alternating projections (MAP), a classical method for solving convex feasibility problems. Unlike MAP, which is an iterative method that converges asymptotically to a feasible point, the algorithm converges after a finite number of steps. The key computational c...
متن کاملAn analytic center quadratic cut method for the convex quadratic feasibility problem
Abstract. We consider a quadratic cut method based on analytic centers for two cases of convex quadratic feasibility problems. In the first case, the convex set is defined by a finite yet large number of convex quadratic inequalities. We extend quadratic cut algorithm of Luo and Sun [3] for solving such problems by placing or translating the quadratic cuts directly through the current approxima...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملOn Slater's condition and finite convergence of the Douglas-Rachford algorithm for solving convex feasibility problems in Euclidean spaces
The Douglas–Rachford algorithm is a classical and very successful method for solving optimization and feasibility problems. In this paper, we provide novel conditions sufficient for finite convergence in the context of convex feasibility problems. Our analysis builds upon, and considerably extends, pioneering work by Spingarn. Specifically, we obtain finite convergence in the presence of Slater...
متن کاملSolving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms
Sugeno-Weber family of t-norms and t-conorms is one of the most applied one in various fuzzy modelling problems. This family of t-norms and t-conorms was suggested by Weber for modeling intersection and union of fuzzy sets. Also, the t-conorms were suggested as addition rules by Sugeno for so-called $lambda$–fuzzy measures. In this paper, we study a nonlinear optimization problem where the fea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Global Optimization
دوره 38 شماره
صفحات -
تاریخ انتشار 2007